metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C23.22D20, (C2×C40)⋊20C4, (C2×C8)⋊6Dic5, C40⋊6C4⋊29C2, C40⋊5C4⋊29C2, C20.78(C4⋊C4), (C2×C20).61Q8, C20.75(C2×Q8), C40.114(C2×C4), (C2×C4).169D20, (C2×C20).401D4, (C2×C8).307D10, C8.17(C2×Dic5), (C22×C8).11D5, C10.15(C4○D8), (C22×C40).17C2, C4.23(C4⋊Dic5), (C2×C4).50Dic10, C4.41(C2×Dic10), C22.52(C2×D20), C2.4(D40⋊7C2), (C2×C20).765C23, C20.230(C22×C4), (C2×C40).392C22, (C22×C4).425D10, (C22×C10).137D4, C5⋊5(C23.25D4), C4.25(C22×Dic5), C4⋊Dic5.281C22, C22.13(C4⋊Dic5), (C22×C20).539C22, C23.21D10.5C2, C10.69(C2×C4⋊C4), C2.12(C2×C4⋊Dic5), (C2×C10).79(C4⋊C4), (C2×C20).479(C2×C4), (C2×C10).155(C2×D4), (C2×C4).83(C2×Dic5), (C2×C4).712(C22×D5), SmallGroup(320,733)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C23.22D20
G = < a,b,c,d,e | a2=b2=c2=1, d20=c, e2=cb=bc, ab=ba, eae-1=ac=ca, ad=da, bd=db, be=eb, cd=dc, ce=ec, ede-1=d19 >
Subgroups: 334 in 114 conjugacy classes, 71 normal (25 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, C2×C4, C23, C10, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, Dic5, C20, C20, C2×C10, C2×C10, C2×C10, C4.Q8, C2.D8, C42⋊C2, C22×C8, C40, C2×Dic5, C2×C20, C2×C20, C22×C10, C23.25D4, C4×Dic5, C4⋊Dic5, C23.D5, C2×C40, C2×C40, C22×C20, C40⋊6C4, C40⋊5C4, C23.21D10, C22×C40, C23.22D20
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, D5, C4⋊C4, C22×C4, C2×D4, C2×Q8, Dic5, D10, C2×C4⋊C4, C4○D8, Dic10, D20, C2×Dic5, C22×D5, C23.25D4, C4⋊Dic5, C2×Dic10, C2×D20, C22×Dic5, D40⋊7C2, C2×C4⋊Dic5, C23.22D20
(81 101)(82 102)(83 103)(84 104)(85 105)(86 106)(87 107)(88 108)(89 109)(90 110)(91 111)(92 112)(93 113)(94 114)(95 115)(96 116)(97 117)(98 118)(99 119)(100 120)(121 141)(122 142)(123 143)(124 144)(125 145)(126 146)(127 147)(128 148)(129 149)(130 150)(131 151)(132 152)(133 153)(134 154)(135 155)(136 156)(137 157)(138 158)(139 159)(140 160)
(1 79)(2 80)(3 41)(4 42)(5 43)(6 44)(7 45)(8 46)(9 47)(10 48)(11 49)(12 50)(13 51)(14 52)(15 53)(16 54)(17 55)(18 56)(19 57)(20 58)(21 59)(22 60)(23 61)(24 62)(25 63)(26 64)(27 65)(28 66)(29 67)(30 68)(31 69)(32 70)(33 71)(34 72)(35 73)(36 74)(37 75)(38 76)(39 77)(40 78)(81 152)(82 153)(83 154)(84 155)(85 156)(86 157)(87 158)(88 159)(89 160)(90 121)(91 122)(92 123)(93 124)(94 125)(95 126)(96 127)(97 128)(98 129)(99 130)(100 131)(101 132)(102 133)(103 134)(104 135)(105 136)(106 137)(107 138)(108 139)(109 140)(110 141)(111 142)(112 143)(113 144)(114 145)(115 146)(116 147)(117 148)(118 149)(119 150)(120 151)
(1 21)(2 22)(3 23)(4 24)(5 25)(6 26)(7 27)(8 28)(9 29)(10 30)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)(41 61)(42 62)(43 63)(44 64)(45 65)(46 66)(47 67)(48 68)(49 69)(50 70)(51 71)(52 72)(53 73)(54 74)(55 75)(56 76)(57 77)(58 78)(59 79)(60 80)(81 101)(82 102)(83 103)(84 104)(85 105)(86 106)(87 107)(88 108)(89 109)(90 110)(91 111)(92 112)(93 113)(94 114)(95 115)(96 116)(97 117)(98 118)(99 119)(100 120)(121 141)(122 142)(123 143)(124 144)(125 145)(126 146)(127 147)(128 148)(129 149)(130 150)(131 151)(132 152)(133 153)(134 154)(135 155)(136 156)(137 157)(138 158)(139 159)(140 160)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 135 59 84)(2 154 60 103)(3 133 61 82)(4 152 62 101)(5 131 63 120)(6 150 64 99)(7 129 65 118)(8 148 66 97)(9 127 67 116)(10 146 68 95)(11 125 69 114)(12 144 70 93)(13 123 71 112)(14 142 72 91)(15 121 73 110)(16 140 74 89)(17 159 75 108)(18 138 76 87)(19 157 77 106)(20 136 78 85)(21 155 79 104)(22 134 80 83)(23 153 41 102)(24 132 42 81)(25 151 43 100)(26 130 44 119)(27 149 45 98)(28 128 46 117)(29 147 47 96)(30 126 48 115)(31 145 49 94)(32 124 50 113)(33 143 51 92)(34 122 52 111)(35 141 53 90)(36 160 54 109)(37 139 55 88)(38 158 56 107)(39 137 57 86)(40 156 58 105)
G:=sub<Sym(160)| (81,101)(82,102)(83,103)(84,104)(85,105)(86,106)(87,107)(88,108)(89,109)(90,110)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(121,141)(122,142)(123,143)(124,144)(125,145)(126,146)(127,147)(128,148)(129,149)(130,150)(131,151)(132,152)(133,153)(134,154)(135,155)(136,156)(137,157)(138,158)(139,159)(140,160), (1,79)(2,80)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,47)(10,48)(11,49)(12,50)(13,51)(14,52)(15,53)(16,54)(17,55)(18,56)(19,57)(20,58)(21,59)(22,60)(23,61)(24,62)(25,63)(26,64)(27,65)(28,66)(29,67)(30,68)(31,69)(32,70)(33,71)(34,72)(35,73)(36,74)(37,75)(38,76)(39,77)(40,78)(81,152)(82,153)(83,154)(84,155)(85,156)(86,157)(87,158)(88,159)(89,160)(90,121)(91,122)(92,123)(93,124)(94,125)(95,126)(96,127)(97,128)(98,129)(99,130)(100,131)(101,132)(102,133)(103,134)(104,135)(105,136)(106,137)(107,138)(108,139)(109,140)(110,141)(111,142)(112,143)(113,144)(114,145)(115,146)(116,147)(117,148)(118,149)(119,150)(120,151), (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)(81,101)(82,102)(83,103)(84,104)(85,105)(86,106)(87,107)(88,108)(89,109)(90,110)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(121,141)(122,142)(123,143)(124,144)(125,145)(126,146)(127,147)(128,148)(129,149)(130,150)(131,151)(132,152)(133,153)(134,154)(135,155)(136,156)(137,157)(138,158)(139,159)(140,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,135,59,84)(2,154,60,103)(3,133,61,82)(4,152,62,101)(5,131,63,120)(6,150,64,99)(7,129,65,118)(8,148,66,97)(9,127,67,116)(10,146,68,95)(11,125,69,114)(12,144,70,93)(13,123,71,112)(14,142,72,91)(15,121,73,110)(16,140,74,89)(17,159,75,108)(18,138,76,87)(19,157,77,106)(20,136,78,85)(21,155,79,104)(22,134,80,83)(23,153,41,102)(24,132,42,81)(25,151,43,100)(26,130,44,119)(27,149,45,98)(28,128,46,117)(29,147,47,96)(30,126,48,115)(31,145,49,94)(32,124,50,113)(33,143,51,92)(34,122,52,111)(35,141,53,90)(36,160,54,109)(37,139,55,88)(38,158,56,107)(39,137,57,86)(40,156,58,105)>;
G:=Group( (81,101)(82,102)(83,103)(84,104)(85,105)(86,106)(87,107)(88,108)(89,109)(90,110)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(121,141)(122,142)(123,143)(124,144)(125,145)(126,146)(127,147)(128,148)(129,149)(130,150)(131,151)(132,152)(133,153)(134,154)(135,155)(136,156)(137,157)(138,158)(139,159)(140,160), (1,79)(2,80)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,47)(10,48)(11,49)(12,50)(13,51)(14,52)(15,53)(16,54)(17,55)(18,56)(19,57)(20,58)(21,59)(22,60)(23,61)(24,62)(25,63)(26,64)(27,65)(28,66)(29,67)(30,68)(31,69)(32,70)(33,71)(34,72)(35,73)(36,74)(37,75)(38,76)(39,77)(40,78)(81,152)(82,153)(83,154)(84,155)(85,156)(86,157)(87,158)(88,159)(89,160)(90,121)(91,122)(92,123)(93,124)(94,125)(95,126)(96,127)(97,128)(98,129)(99,130)(100,131)(101,132)(102,133)(103,134)(104,135)(105,136)(106,137)(107,138)(108,139)(109,140)(110,141)(111,142)(112,143)(113,144)(114,145)(115,146)(116,147)(117,148)(118,149)(119,150)(120,151), (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)(81,101)(82,102)(83,103)(84,104)(85,105)(86,106)(87,107)(88,108)(89,109)(90,110)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(121,141)(122,142)(123,143)(124,144)(125,145)(126,146)(127,147)(128,148)(129,149)(130,150)(131,151)(132,152)(133,153)(134,154)(135,155)(136,156)(137,157)(138,158)(139,159)(140,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,135,59,84)(2,154,60,103)(3,133,61,82)(4,152,62,101)(5,131,63,120)(6,150,64,99)(7,129,65,118)(8,148,66,97)(9,127,67,116)(10,146,68,95)(11,125,69,114)(12,144,70,93)(13,123,71,112)(14,142,72,91)(15,121,73,110)(16,140,74,89)(17,159,75,108)(18,138,76,87)(19,157,77,106)(20,136,78,85)(21,155,79,104)(22,134,80,83)(23,153,41,102)(24,132,42,81)(25,151,43,100)(26,130,44,119)(27,149,45,98)(28,128,46,117)(29,147,47,96)(30,126,48,115)(31,145,49,94)(32,124,50,113)(33,143,51,92)(34,122,52,111)(35,141,53,90)(36,160,54,109)(37,139,55,88)(38,158,56,107)(39,137,57,86)(40,156,58,105) );
G=PermutationGroup([[(81,101),(82,102),(83,103),(84,104),(85,105),(86,106),(87,107),(88,108),(89,109),(90,110),(91,111),(92,112),(93,113),(94,114),(95,115),(96,116),(97,117),(98,118),(99,119),(100,120),(121,141),(122,142),(123,143),(124,144),(125,145),(126,146),(127,147),(128,148),(129,149),(130,150),(131,151),(132,152),(133,153),(134,154),(135,155),(136,156),(137,157),(138,158),(139,159),(140,160)], [(1,79),(2,80),(3,41),(4,42),(5,43),(6,44),(7,45),(8,46),(9,47),(10,48),(11,49),(12,50),(13,51),(14,52),(15,53),(16,54),(17,55),(18,56),(19,57),(20,58),(21,59),(22,60),(23,61),(24,62),(25,63),(26,64),(27,65),(28,66),(29,67),(30,68),(31,69),(32,70),(33,71),(34,72),(35,73),(36,74),(37,75),(38,76),(39,77),(40,78),(81,152),(82,153),(83,154),(84,155),(85,156),(86,157),(87,158),(88,159),(89,160),(90,121),(91,122),(92,123),(93,124),(94,125),(95,126),(96,127),(97,128),(98,129),(99,130),(100,131),(101,132),(102,133),(103,134),(104,135),(105,136),(106,137),(107,138),(108,139),(109,140),(110,141),(111,142),(112,143),(113,144),(114,145),(115,146),(116,147),(117,148),(118,149),(119,150),(120,151)], [(1,21),(2,22),(3,23),(4,24),(5,25),(6,26),(7,27),(8,28),(9,29),(10,30),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40),(41,61),(42,62),(43,63),(44,64),(45,65),(46,66),(47,67),(48,68),(49,69),(50,70),(51,71),(52,72),(53,73),(54,74),(55,75),(56,76),(57,77),(58,78),(59,79),(60,80),(81,101),(82,102),(83,103),(84,104),(85,105),(86,106),(87,107),(88,108),(89,109),(90,110),(91,111),(92,112),(93,113),(94,114),(95,115),(96,116),(97,117),(98,118),(99,119),(100,120),(121,141),(122,142),(123,143),(124,144),(125,145),(126,146),(127,147),(128,148),(129,149),(130,150),(131,151),(132,152),(133,153),(134,154),(135,155),(136,156),(137,157),(138,158),(139,159),(140,160)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,135,59,84),(2,154,60,103),(3,133,61,82),(4,152,62,101),(5,131,63,120),(6,150,64,99),(7,129,65,118),(8,148,66,97),(9,127,67,116),(10,146,68,95),(11,125,69,114),(12,144,70,93),(13,123,71,112),(14,142,72,91),(15,121,73,110),(16,140,74,89),(17,159,75,108),(18,138,76,87),(19,157,77,106),(20,136,78,85),(21,155,79,104),(22,134,80,83),(23,153,41,102),(24,132,42,81),(25,151,43,100),(26,130,44,119),(27,149,45,98),(28,128,46,117),(29,147,47,96),(30,126,48,115),(31,145,49,94),(32,124,50,113),(33,143,51,92),(34,122,52,111),(35,141,53,90),(36,160,54,109),(37,139,55,88),(38,158,56,107),(39,137,57,86),(40,156,58,105)]])
92 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | ··· | 4N | 5A | 5B | 8A | ··· | 8H | 10A | ··· | 10N | 20A | ··· | 20P | 40A | ··· | 40AF |
| order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 5 | 5 | 8 | ··· | 8 | 10 | ··· | 10 | 20 | ··· | 20 | 40 | ··· | 40 |
| size | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 20 | ··· | 20 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
92 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| type | + | + | + | + | + | + | - | + | + | - | + | + | - | + | + | |||
| image | C1 | C2 | C2 | C2 | C2 | C4 | D4 | Q8 | D4 | D5 | Dic5 | D10 | D10 | C4○D8 | Dic10 | D20 | D20 | D40⋊7C2 |
| kernel | C23.22D20 | C40⋊6C4 | C40⋊5C4 | C23.21D10 | C22×C40 | C2×C40 | C2×C20 | C2×C20 | C22×C10 | C22×C8 | C2×C8 | C2×C8 | C22×C4 | C10 | C2×C4 | C2×C4 | C23 | C2 |
| # reps | 1 | 2 | 2 | 2 | 1 | 8 | 1 | 2 | 1 | 2 | 8 | 4 | 2 | 8 | 8 | 4 | 4 | 32 |
Matrix representation of C23.22D20 ►in GL3(𝔽41) generated by
| 40 | 0 | 0 |
| 0 | 1 | 0 |
| 0 | 0 | 40 |
| 40 | 0 | 0 |
| 0 | 1 | 0 |
| 0 | 0 | 1 |
| 1 | 0 | 0 |
| 0 | 40 | 0 |
| 0 | 0 | 40 |
| 40 | 0 | 0 |
| 0 | 19 | 0 |
| 0 | 0 | 28 |
| 32 | 0 | 0 |
| 0 | 0 | 28 |
| 0 | 19 | 0 |
G:=sub<GL(3,GF(41))| [40,0,0,0,1,0,0,0,40],[40,0,0,0,1,0,0,0,1],[1,0,0,0,40,0,0,0,40],[40,0,0,0,19,0,0,0,28],[32,0,0,0,0,19,0,28,0] >;
C23.22D20 in GAP, Magma, Sage, TeX
C_2^3._{22}D_{20} % in TeX
G:=Group("C2^3.22D20"); // GroupNames label
G:=SmallGroup(320,733);
// by ID
G=gap.SmallGroup(320,733);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,232,422,100,1684,102,12550]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^20=c,e^2=c*b=b*c,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^19>;
// generators/relations